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Abstract The class of drugs known as statins is attracting great interest for their efficacy in the 
treatment of obesity and cardiovascular disease. However, they may be effective in the 
treatment of certain neurodegenerative diseases as well. Thus, interest in the interaction 
of circulating and brain cholesterol has significantly increased. Recent research has raised 
the question whether statins are able to affect the metabolism of brain cholesterol. Actu-
ally, defects in brain cholesterol metabolism have been shown to be implicated in certain 
neurodegenerative diseases. Despite considerable efforts, there is a lack of information 
concerning the basic pharmacokinetics and pharmacodynamics of statins in the brain due 
to poor drug permeability across the blood-brain barrier. The purpose of this review is to 
examine biosynthesis of cholesterol in the brain, distribution of statins and their possible 
neuroprotective actions. Moreover, review aims to examine types of transporters of statins 
across the blood-brain barrier. 

Introduction
Statins are generally recognized for their efficacy in 
the treatment of obesity and cardiovascular disease 
(Taylor et al 2012). But there is growing evidence to 
support the hypothesis that statins may act as neuro-
protectants in several neuropathological conditions 
or as potential agents in the prevention of neurode-
generative diseases, particularly Alzheimer´s disease 
(Kandiah & Feldman 2009; Barone et al 2014; Zvěrová 
et al 2014). The association between Alzheimer´s 
disease and cholesterol levels has been highlighted 
in the last decade. Since dysregulation of cholesterol 
homeostasis in the brain has been linked to chronic 
neurodegenerative disorders (Vance 2012), the treat-
ment of neurodegenerative disease with statins was 
proposed by several authors as an effective emerging 
therapy to stop or delay the neurodegenerative process 
(Jick et al 2000; Wolozin et al 2000; Hajjar et al 2002; 
Silva et al 2013). One of the biggest problems and chal-

lenges in the development of new drugs and treatment 
strategies for neurodegenerative (CNS) diseases is the 
difficulty of passing the drugs across the blood-brain 
barrier (BBB). Mechanisms for statin uptake into the 
brain include diffusion and active transport across the 
BBB depending on the acid or lactone form of statins 
(Wood et al 2014).

Cholesterol in the CNS
Cholesterol is the major lipid compound of the brain 
and the brain is the most cholesterol-rich organ 
(Dietschy & Turley 2001; Björkhem et al 2004). 
Approximately one quarter of the total amount of 
human cholesterol and its derivatives is found in the 
brain while the whole body cholesterol makes only 
up 2% of total body weight (Dietschy & Turley 2001; 
Dietschy & Turley 2004). This sterol is critically impor-
tant for the maintenance of physiological functions in 
the brain such as synaptic transmission (Mauch et al 
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2001), axon guydance and growth factor signaling. A 
study of Koudinov & Koudinova (2001) indicated that 
the lack of cholesterol supply in hippocampal neurons 
caused the failure of synaptic plasticity and neurotrans-
mission. Thus, defects in cholesterol metabolism lead 
to structural and functional CNS disorders (Di Paolo 
& Kim 2011). In the brain generally, cholesterol is pro-
duced by both astrocytes and oligodendroglia (Dietschy 
& Turley 2001; Dietschy & Turley 2004; Bjorkhem & 
Meaney 2004; Bjorkhem & Meaney 2015). Within the 
cells, the biggest reservoirs of cholesterol are found in 
the plasma membrane (Mesmin & Maxfield 2009). In 
CNS, cholesterol is unesterified and it represents the 
major sterol in the adult brain. Neurons, like all other 
body cells, must be continuously supplied by unesteri-
fied cholesterol (Cibičková 2011). About only 1% of 
the total cholesterol remains as esterified form, as lipid 
droplets (Bryleva et al 2010).

 Majority of cholesterol present in the brain is in the 
form of myelin that surrounds axons and facilitates the 
transmission of electrical signals (Snipes & Suter 1998; 
Dietschy & Turley 2001; Quan et al 2003).

An excess or deficiency of cholesterol in the brain 
might be expected to have profound consequence, but 
cellular cholesterol homeostasis is tightly regulated 
(Brown & Goldstein 1986). This can be explained by an 
efficient recycling of brain cholesterol. The metabolism 
of brain cholesterol differs from that of other tissues. 
The BBB effectively prevents uptake from the circula-
tion (Dietschy & Turley 2001; Abad-Rodrigue et al 
2006). Thus, there is a highly efficient apolipoprotein-
dependent recycling of cholesterol in the brain, with 
minimal loses in the circulation (Bjorkhem & Meaney 
2015). Whereas efflux of plasma lipoproteins across the 
intact BBB is limited, the majority of brain cholesterol 
is derived by de novo synthesis from the endoplasmatic 
reticulum (ER) within the nerve cells (Goldstein & 
Brown 1990; Di Paolo & Kim 2011). Newly synthesized 
cholesterol is transferred from ER to plasma membrane 
rapidly (DeGrella & Simoni 1982). Cholesterol is syn-
thesized via the isoprenoid biosynthetic pathway, which 
starts with acetyl-CoA as substrate. For cholesterol pro-
duction, at least 20 enzymes are involved (Waterham 
2006). The half-life of cholesterol in the adult rat brain 
has been estimated to be 6 months (Andersson & al 
1990), while half-life of plasma cholesterol is only a few 
days (Dietschy & Turley 2004). Cholesterol is necessary 
for brain development and its synthesis continues at 
a lower rate in the adult brain (Dietschy 2009). Thus, 
as the CNS matures and cholesterol pools in the brain 
become constant, the rate of de novo cholesterol syn-
thesis in the brain probably decline (Thelen et al 2006). 
Thelen et al (2006) discovered that during aging, choles-
terol synthesis is decreased in the hippocampus, while 
absolute cholesterol content remains at a stable level. 

According to some studies, cholesterol in the intact 
brain is synthesized in such extent that physiological 
statin concentrations may have only low cholesterol 

reducing effect, if any (Dietschy & Turley 2001; Abad-
Rodrigue et al 2006).

Export of Cholesterol from the Brain
In spite of the efficacy of the cholesterol recycling in the 
brain, a small efflux of cholesterol into the circulation 
is needed to maintain the steady state. Mechanisms to 
export cholesterol into the circulation are required to 
maintain homeostasis, because a sufficient availability 
of cholesterol is necessary for normal neuronal func-
tion. The brain has lipoprotein transport system inde-
pendent of that in the peripheral circulation. There are 
two different pathways to efflux of cholesterol from the 
brain. Under steady-state conditions, excretion of apo-
lipoprotein E (ApoE)-bound cholesterol is mediated via 
the cerebrospinal fluid (CSF) (Pitas et al 1987a). ApoE is 
expressed in the brain in high concentrations, such that 
the brain is the organ with the second highest ApoE 
expression after the liver (Linton et al 1991). This apoli-
poprotein is one of the major apolipoproteins in plasma 
(Bojar et al 2012) and it is the quantitatively the most 
important transport protein for cholesterol in the brain. 
The stability of ApoE in the brain requires the associa-
tion with lipids (Wahrle et al 2004). ApoE and choles-
terol are produced by astrocytes (Boyles et al 1985) and 
it is shuttled from astrocytes to neurons (Mauch at al 
2001; Michikawa et al 2000; Vance & Hayashi, 2010). 
The capacity of this pathway is very limited and can 
export only 1–2 mg cholesterol per day. The interaction 
between ApoE-containing lipoproteins and neuronal 
receptors seem to be crucial for normal neuronal func-
tion (Pitas et al 1987b; Vance 2012).

Another, more important mechanism to efflux of 
cholesterol from the brain involves conversion of choles-
terol into its brain specific metabolite 24S-hydroxycho-
lesterol (24S-OH-CHOL) by cholesterol 24-hydroxylase 
(Lutjohann et al 1996; Bjorkhem et al 1997). This side-
chain oxidized oxysterol is able to cross the BBB at a 
much faster rate than cholesterol itself (Pitas et al 1987a; 
Bjorkhem et al 1997; Bjorkhem & Meaney, 2015). The 
introduction of a hydroxyl group in the side chain of 
oxysterols (Figure 1) leads to a local reordering of mem-
brane phospholipids (Kessel et al 2001). The flux of 
24S-OH-CHOL through the BBB is limited to about 6–7 
mg per day (Lutjohann et al 1995; Bjorkhem et al 1998). 

In humans, the efflux of 24S-OH-CHOL corresponds 
to the uptake of a similar amount of 24S-OH-CHOL by 
the liver, which indicates the proprietary production of 
24S-OH-CHOL in the brain (Bjorkhem et al 1998).

Statins and Their Effect on Brain 
Cholesterol
There is a growing evidence to support the hypothesis 
that statins may act as neuroprotectants in several neu-
ropathological conditions (Shitara & Sugiyama 2006). 
Statins are well tolerated and have relatively few side 
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effects. The primary action of statins is to inhibit cel-
lular cholesterol synthesis. However, the cholesterol 
synthesis pathway has different by-products, the non-
sterol isoprenoids that are important in normal cellu-
lar function (Van der Most et al 2009). Thus, except of 
cholesterol reducing effect, statins may perform their 
neuroprotection via modulation of isoprenoid levels.

Statins directly inhibit the first step in the biosyn-
thesis of cholesterol, which is the conversion of the 
hydroxyl-methyl-glutaryl-CoA (HMG-CoA) into 
L-mevalonate by inhibiting HMG-CoA reductase 
(Shitara & Sugiyama 2006). In the CNS, HMG-CoA 
reductase is an enzyme which is expressed with high 
transcript levels in cortical, cholinergic and hippocam-
pal neurons (Korade et al 2007). This enzyme catalyzes 
the production of L-mevalonate from HMG-CoA. 
L-mevalovate is the precursor of a number of different 
lipids such as farnesyl pyrophosphate (FPP) and gera-
nylgeranylpyrophosphate (GGPP) (Goldsetin & Brown 
1990; Schonbeck & Libby 2004; Wood et al 2010). 
Statin-induced neuroprotection in some cases has been 
proposed to be therefore due to a reduction in FPP and/
or GGPP levels (Cole & Vassar 2006; Hooff et al 2010; 
Li et al 2012). However, short-term statin treatment 
does not alter cholesterol levels in the brain (Botti et al 
1991). Only long-term treatment can affect the choles-
terol level in the brain. It was reported that more than 6 
months of statin treatment reduces cholesterol level in 
the CSF (Fassbender et al 2002).

Some data suggest that statins activate a general 
neuroprotective mechanism. It has been demonstrated 
that the intake of statins is associated with a decreased 
incidence of Alzheimer´s disease (AD). Higher serum 
levels of cholesterol seem to stimulate beta-secretase, 
which acts on amyloid precursor protein (APP) and 
arise beta-amyloid (Aβ). Cholesterol facilitates deposi-
tion of Aβ into plaques, that is important for develop-

ment of AD (Cibičková & Palička 2005). Several studies 
reported that statins reduce the production of the Aβ 
peptide in vitro (Wolozin et al 2006; Hoglund & Blen-
now 2007). Statins are a family of drugs with pleiotro-
pic functions. They are able to decrease oxidative stress, 
glial activation and they could up-regulate endothelial 
nitric oxide synthase expression. In several studies, 
statins maintained the number of Purkinje cells and 
their networks in the AD cerebellum (Cibičková 2011; 
Kozuki et al 2011).

Statins can activate several neuroprotective signal-
ling pathways. The neuroprotective effect correlate 
roughly with the efficacy of blocking HMG-CoA and 
neuroprotective impression could be reversed by addi-
tion of mevalonate or cholesterol (Zacco et al 2003). 
Some findings also suggest that statins induce neuro-
protection by promoting the release of neurotrophic 
factors. For example, simvastatin has been demon-
strated to induce expression of brain-derived neuro-
trophic factor (BDNF) following traumatic brain injury. 
The mechanism how statins yield this effect is however 
unclear (Wu et al 2008).

Statins could act as neuroprotectants through sev-
eral another mechanisms (Elkid 2006). They can con-
tribute to the neuroprotection by reduction of oxidative 
damage via the inhibition of endothelial O2–• formation 
(Wallerath et al 2003) and the increase of Cu/Zn super-
oxide dismutase (SOD3) activity as well as the number 
of functionally active endothelial progenitor cells 
(Landmesser et al 2005). Statins can reduce the pro-
duction of reactive oxygen species (ROS) by inhibiting 
the formation and activation of nicotinamide adenine 
dinucleotide phosphate (NADPH)-complex (Was-
smann et al 2001). In addition, they decrease oxidative 
damage by the increase of expression and activation of 
endothelial nitric oxide synthase (eNOS) (Kureishi et 
al 2000; Laufs et al 2005). Statins modulate endothe-

Fig. 1. The efflux of cholesterol 
from the brain by 
24S-hydroxycholesterol. 
Oxysterol 
24S-hydroxycholesterol 
(24S-OH-CHOL) is able 
to traverse the blood-
brain barrier due to the 
introduction of an hydroxyl 
group in the side chain of 
oxysterols. It leads to a local 
reordering of membrane 
phospholipids.
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lial function by enhance nitric oxide production (NO) 
(Bellosta et al 2000). eNOS is inhibited by the presence 
of oxidized low-density lipoprotein (LDL), so statins 
improve eNOS expression (Laufs et al 1998; Liu et al 
2009). The production of NO may affect cerebrovascu-
lar disease by enhancing vascular smooth muscle relax-
ation and by increasing cerebral blood flow (Sterzer et 
al 2001). To better understand the effects of statins on 
cholesterol metabolism in the brain it is necessary to 
find out both direct and indirect effects of these drugs 
(Beziaud et al 2011). Some effects of statins, described 
as pleiotropic effects, including positive influence on 
vascular injury and NO production might affect the 
integrity of the BBB (Banks & Erickson 2010). 

All statins share the same main mechanism of action, 
but their pharmacokinetic profile is quite different (Shi-
tara & Sugiyama 2006). In the pharmacodynamic and 
pharmacokinetic behavior of statins, hydrophilic or 
lipophilic nature plays a  very significant role. Hydro-
phobic statins can easily cross the BBB, whereas hydro-
philic statins are thought not to cross the barrier. There 
is clinical evidence that the dosage of statins can cause 
lower or higher permeability (King et al 2003).

Transport of Statins Across the Blood-
Brain Barrier
The most important factor limiting statins transport 
into the CNS is BBB. The BBB limits the brain penetra-
tion of most CNS drug candidates. Drug transport in 
the CNS is highly regulated by the BBB, the CSF barri-
ers, and by brain parenchyma. The cellular membranes 
of parenchyma cells act as a  second „barrier“ to drug 
permeability. The anatomical basis of the BBB is the 
brain microvascular endothelial barrier. The micro-
vascular cells of the brain include endothelial cells, the 
pericyte, astrocyte, and nerve endings that end directly 
on the vascular surface (Pardridge 2007). The endo-
thelial barrier is specifically tight at the interface with 
the brain astrocytes and in normal conditions can be 
passed using endogenous BBB transporters resulting in 
carrier mediated transport, active efflux transport and 
receptor mediated transport. This barrier exists at the 
level of endothelial cells of brain vasculature and main-
tains the brain homeostasis (Koziara et al 2006). 

The BBB prevents diffusion of large molecules into 
the brain (Reese & Karnovsky 1967), therefore BBB 
dysfunction is assumed to contribute to brain injury. 
After ischemic stroke and traumatic brain injury, 
statins have been shown to provide neuroprotection 
with beneficial effects on the neuronal and neurovas-
cular systems (Chen et al 2003; Wu et al 2008; Wible & 
Laskowitz 2010). The BBB can be disrupted by different 
ways. Disruption may be accompanied by leakage of 
plasma proteins into the brain. Since albumin is toxic to 
astrocytes (Nadal 1995) this process may be followed by 
vascular pathology (Lossinsky et al 1995) and chronic 
neuropathologic changes (Salahiddin et al 1988). The 

pharmacological access for inducing neuroprotection 
after an injury due to cerebral ischemia includes block-
ing of signalig pathways that initiate cell death (Mantz 
et al 2010; Moskowicz et al 2010). Similarly, several 
epidemiological evidences on the beneficial effect of 
statins were found in lowering the risk of developing 
dementia (Jick et al 2000; Wolozin et al 2000; Hajjar et 
al 2002). A few studies have shown that statins pass the 
BBB. The BBB can be traversed due to multiple endog-
enous transporters within the barrier. Mechanisms for 
statin uptake into the brain include diffusion and active 
transport across the BBB depending on the acid or lac-
tone form of statins (Wood et al 2014). Hydrophobic 
statins (atorvastatin, simvastatin, fluvastatin, lovastatin, 
cerivastatin) can easily cross the BBB, whereas hydro-
philic statins (rosuvastatin, pravastatin) are thought not 
to cross the barrier. There is clinical evidence that the 
dosage of statins can cause lower or higher permeability 
(King et al 2003, Tsuji et al 1993). 

The mechanism of brain drug delivery is based on 
knowledge of endogenous BBB transporters and on 
reformulating drug structures. The main types of trans-
porters are the adenosine triphosphate (ATP)-binding 
cassette (ABC) (Willyerd et al 2015) and solute carrier 
(SLC) transporters (Lin et al 2015). SLC is a family of 
membrane-bound proteins and it comprises facilitated 
and ion-coupled transporters (Lin et al 2015). ABC 
transporters, namely ABCA1, ABCG1 and ABCG4 are 
expressed by neurons to mediate cellular sterol efflux at 
the plasma membrane (Kim et al 2008). ABC transport-
ers rely on ATP to actively pump substrates across cell 
membranes (Willyerd et al 2015).

Statins are metabolized in the brain or actively 
transported out of the brain. There is the evidence that 
hydrophobic statins interact with monocarboxylic acid 
transporters-4 (MCT4) to a greater extent than hydro-
philic statins (Kobayashi et al 2006). Monocarboxylic 
acid transporters (MCT1, MCT2, MCT3, MCT4) have 
been identified in the brain. They are associated with 
BBB and reside in astrocytes and neurons to varying 
degrees (Pierre & Pellerin 2005). Atorvastatin acid, 
simvastatin acid and lovastatin acid were found to be 
transported into cells by organic anion transporter poly-
peptide (OATP) family, specifically OATP2 (Hsiang et 
al 1999). This polypeptide has been identified in the 
BBB of rats and in the choroid plexus (Lee et al 2013). 
Some studies have demonstrated the existence of both 
efflux and influx transporters within glial cells what 
highlight the complexity of drug distribution within the 
CNS (Decleves et al 2000; Hong et al 2000; Hong et al 
2001; Dallas et al 2001; Lee et al 2001).

A  different mechanism which could contribute to 
the elimination of statins from the brain is the perme-
ability glycoprotein (P-gp, encoded by ABCB1 gene) 
transporter. It is an efflux transporter and one of the 
most intensively studied cellular multidrug transport-
ers associated with drug removal from cells. P-gp (also 
known as ABCB1 or MDR1) mediates the export of 
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drugs from cells located in the blood-brain barrier, in 
the luminal membrane of the small intestine, hepa-
tocytes and kidney proximal tubules in many organ-
isms (Juliano & Ling 1976; Giacomini et al 2003; Lin 
& Yamazaki 2003; Girardin 2006; Sharom 2006), serv-
ing a protective function for the body against foreign 
substances. P-gp is a member of the ATP-binding cas-
sette (ABC) superfamily. It is one of the ATP dependent 
efflux transporters that have an important physiologi-
cal role in limiting drug entry into the brain. Because 
P-gp is ATP dependent, it is able to transport a variety 
of chemical compounds against a concentration gradi-
ent (Girardin 2006; Sharom 2006). P-gp exports struc-
turally diverse hydrophobic compounds from the cells, 
driven by ATP hydrolysis. The protein also plays an 
important physiological role in limiting drug uptake in 
the gut and entry into the brain (Sharom 2006). P-gp is 
involved in the excretion, absorption and distribution 
of lipophilic and amphipathic drugs (Sharom 2011).

Tight junctions reduce drug transfer between blood 
and the cerebrospinal fluid (CSF). P-gp is transporter 
that removes drugs from the brain interstitial fluid to 
blood or into the CSF (Eyal et al 2009). P-gp expres-
sion in the BBB plays an important role in limiting the 
entry of various drugs into the CNS. Inhibition of the 
P-gp transporter may lead to increased drug delivery to 
the brain (Eyal et al 2009). Several statins, particularly 
atorvastatin and lovastatin, have been shown to interact 
with P-gp at the molecular level (Holtzman et al 2006). 
Results of several studies with in vitro models have 
shown that certain statins (lovastatin, simvastatin, ator-
vastatin) are inhibitors for P-gp or may represent the 
substrates for this transporter as well (Boyd et al 2000; 
Bogman et al 2001; Wang et al 2001; Sakaeda et al 2002; 
Hochman et al 2004; Bogman et al 2001; Hirrlinger et 
al 2002). The lipid bilayer plays an important role in 
P-gp function, and may regulate both the binding and 
transport of drugs (Sharom 2006).

Conclusion
Despite well-known beneficial effects of statins in the 
treatment of obesity and cardiovascular disease their 
role in neuroprotection is just starting to study. In the 
brain, statins may affect cholesterol level by different 
biochemical pathways including direct inhibitory effect 
on cholesterol and isoprenoids or indirectly e.g. by 
modulating NOS activity. Mechanisms of statin deliv-
ery to the brain include diffusion and active transport 
across the blood-brain barrier. Thus, different types of 
statin transporters start to be a hot topic worth to study.
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